Back to Search Start Over

A data-driven approach to UIO-based fault diagnosis

Authors :
Fattore, Giulio
Valcher, Maria Elena
Publication Year :
2024

Abstract

In this paper we propose a data-driven approach to the design of a residual generator, based on a dead-beat unknown-input observer, for linear time-invariant discrete-time state-space models, whose state equation is affected both by disturbances and by actuator faults. We first review the modelbased conditions for the existence of such a residual generator, and then prove that under suitable assumptions on the collected historical data, we are both able to determine if the problem is solvable and to identify the matrices of a possible residual generator. We propose an algorithm that, based only on the collected data (and not on the system description), is able to perform both tasks. An illustrating example and some remarks on limitations and possible extensions of the current results conclude the paper.<br />Comment: This paper has been submitted to IEEE CDC 2024 conference on March 21, 2024

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2404.06158
Document Type :
Working Paper