Back to Search Start Over

VF-NeRF: Viewshed Fields for Rigid NeRF Registration

Authors :
Segre, Leo
Avidan, Shai
Publication Year :
2024

Abstract

3D scene registration is a fundamental problem in computer vision that seeks the best 6-DoF alignment between two scenes. This problem was extensively investigated in the case of point clouds and meshes, but there has been relatively limited work regarding Neural Radiance Fields (NeRF). In this paper, we consider the problem of rigid registration between two NeRFs when the position of the original cameras is not given. Our key novelty is the introduction of Viewshed Fields (VF), an implicit function that determines, for each 3D point, how likely it is to be viewed by the original cameras. We demonstrate how VF can help in the various stages of NeRF registration, with an extensive evaluation showing that VF-NeRF achieves SOTA results on various datasets with different capturing approaches such as LLFF and Objaverese.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2404.03349
Document Type :
Working Paper