Back to Search
Start Over
Jailbreaking Leading Safety-Aligned LLMs with Simple Adaptive Attacks
- Publication Year :
- 2024
-
Abstract
- We show that even the most recent safety-aligned LLMs are not robust to simple adaptive jailbreaking attacks. First, we demonstrate how to successfully leverage access to logprobs for jailbreaking: we initially design an adversarial prompt template (sometimes adapted to the target LLM), and then we apply random search on a suffix to maximize a target logprob (e.g., of the token "Sure"), potentially with multiple restarts. In this way, we achieve 100% attack success rate -- according to GPT-4 as a judge -- on Vicuna-13B, Mistral-7B, Phi-3-Mini, Nemotron-4-340B, Llama-2-Chat-7B/13B/70B, Llama-3-Instruct-8B, Gemma-7B, GPT-3.5, GPT-4o, and R2D2 from HarmBench that was adversarially trained against the GCG attack. We also show how to jailbreak all Claude models -- that do not expose logprobs -- via either a transfer or prefilling attack with a 100% success rate. In addition, we show how to use random search on a restricted set of tokens for finding trojan strings in poisoned models -- a task that shares many similarities with jailbreaking -- which is the algorithm that brought us the first place in the SaTML'24 Trojan Detection Competition. The common theme behind these attacks is that adaptivity is crucial: different models are vulnerable to different prompting templates (e.g., R2D2 is very sensitive to in-context learning prompts), some models have unique vulnerabilities based on their APIs (e.g., prefilling for Claude), and in some settings, it is crucial to restrict the token search space based on prior knowledge (e.g., for trojan detection). For reproducibility purposes, we provide the code, logs, and jailbreak artifacts in the JailbreakBench format at https://github.com/tml-epfl/llm-adaptive-attacks.<br />Comment: Updates in the v3: GPT-4o and Claude 3.5 Sonnet results, improved writing. Updates in the v2: more models (Llama3, Phi-3, Nemotron-4-340B), jailbreak artifacts for all attacks are available, evaluation with different judges (Llama-3-70B and Llama Guard 2), more experiments (convergence plots over iterations, ablation on the suffix length for random search), examples of jailbroken generation
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2404.02151
- Document Type :
- Working Paper