Back to Search
Start Over
Asymptotic solutions of generalized Fermat-type equation of signature $(p,p,3)$ over totally real number fields
- Publication Year :
- 2024
-
Abstract
- In this article, we study the asymptotic solutions of the generalized Fermat-type equation of signature $(p,p,3)$ over totally real number fields $K$, i.e., $Ax^p+By^p=Cz^3$ with prime exponent $p$ and $A,B,C \in \mathcal{O}_K \setminus \{0\}$. For certain class of fields $K$, we prove that $Ax^p+By^p=Cz^3$ has no asymptotic solutions over $K$ (resp., solutions of certain type over $K$) with restrictions on $A,B,C$ (resp., for all $A,B,C \in \mathcal{O}_K \setminus \{0\}$). Finally, we present several local criteria over $K$.<br />Comment: arXiv admin note: substantial text overlap with arXiv:2301.09263
- Subjects :
- Mathematics - Number Theory
Primary 11D41, 11R80, Secondary 11F80, 11G05, 11R04
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2403.14640
- Document Type :
- Working Paper