Back to Search Start Over

Asymptotic solutions of generalized Fermat-type equation of signature $(p,p,3)$ over totally real number fields

Authors :
Kumar, Narasimha
Sahoo, Satyabrat
Publication Year :
2024

Abstract

In this article, we study the asymptotic solutions of the generalized Fermat-type equation of signature $(p,p,3)$ over totally real number fields $K$, i.e., $Ax^p+By^p=Cz^3$ with prime exponent $p$ and $A,B,C \in \mathcal{O}_K \setminus \{0\}$. For certain class of fields $K$, we prove that $Ax^p+By^p=Cz^3$ has no asymptotic solutions over $K$ (resp., solutions of certain type over $K$) with restrictions on $A,B,C$ (resp., for all $A,B,C \in \mathcal{O}_K \setminus \{0\}$). Finally, we present several local criteria over $K$.<br />Comment: arXiv admin note: substantial text overlap with arXiv:2301.09263

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2403.14640
Document Type :
Working Paper