Back to Search Start Over

SIDE-real: Supernova Ia Dust Extinction with truncated marginal neural ratio estimation applied to real data

Authors :
Karchev, Konstantin
Grayling, Matthew
Boyd, Benjamin M.
Trotta, Roberto
Mandel, Kaisey S.
Weniger, Christoph
Source :
Mon. Notices Royal Astron. Soc. 530 (2024) 3881-3896
Publication Year :
2024

Abstract

We present the first fully simulation-based hierarchical analysis of the light curves of a population of low-redshift type Ia supernovae (SNae Ia). Our hardware-accelerated forward model, released in the Python package slicsim, includes stochastic variations of each SN's spectral flux distribution (based on the pre-trained BayeSN model), extinction from dust in the host and in the Milky Way, redshift, and realistic instrumental noise. By utilising truncated marginal neural ratio estimation (TMNRE), a neural network-enabled simulation-based inference technique, we implicitly marginalise over 4000 latent variables (for a set of $\approx 100$ SNae Ia) to efficiently infer SN Ia absolute magnitudes and host-galaxy dust properties at the population level while also constraining the parameters of individual objects. Amortisation of the inference procedure allows us to obtain coverage guarantees for our results through Bayesian validation and frequentist calibration. Furthermore, we show a detailed comparison to full likelihood-based inference, implemented through Hamiltonian Monte Carlo, on simulated data and then apply TMNRE to the light curves of 86 SNae Ia from the Carnegie Supernova Project, deriving marginal posteriors in excellent agreement with previous work. Given its ability to accommodate arbitrarily complex extensions to the forward model -- e.g. different populations based on host properties, redshift evolution, complicated photometric redshift estimates, selection effects, and non-Ia contamination -- without significant modifications to the inference procedure, TMNRE has the potential to become the tool of choice for cosmological parameter inference from future, large SN Ia samples.<br />Comment: 16 pages, 10 figures; Published in MNRAS; (c): 2024 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society

Details

Database :
arXiv
Journal :
Mon. Notices Royal Astron. Soc. 530 (2024) 3881-3896
Publication Type :
Report
Accession number :
edsarx.2403.07871
Document Type :
Working Paper
Full Text :
https://doi.org/10.1093/mnras/stae995