Back to Search
Start Over
UPS: Efficiently Building Foundation Models for PDE Solving via Cross-Modal Adaptation
- Publication Year :
- 2024
-
Abstract
- We present Unified PDE Solvers (UPS), a data- and compute-efficient approach to developing unified neural operators for diverse families of spatiotemporal PDEs from various domains, dimensions, and resolutions. UPS embeds different PDEs into a shared representation space and processes them using a FNO-transformer architecture. Rather than training the network from scratch, which is data-demanding and computationally expensive, we warm-start the transformer from pretrained LLMs and perform explicit alignment to reduce the modality gap while improving data and compute efficiency. The cross-modal UPS achieves state-of-the-art results on a wide range of 1D and 2D PDE families from PDEBench, outperforming existing unified models using 4 times less data and 26 times less compute. Meanwhile, it is capable of few-shot transfer to unseen PDE families and coefficients.<br />Comment: ICML 2024 AI for Science Workshop (Spotlight)
- Subjects :
- Computer Science - Machine Learning
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2403.07187
- Document Type :
- Working Paper