Back to Search Start Over

Density-Guided Label Smoothing for Temporal Localization of Driving Actions

Authors :
Alkanat, Tunc
Akdag, Erkut
Bondarev, Egor
De With, Peter H. N.
Publication Year :
2024

Abstract

Temporal localization of driving actions plays a crucial role in advanced driver-assistance systems and naturalistic driving studies. However, this is a challenging task due to strict requirements for robustness, reliability and accurate localization. In this work, we focus on improving the overall performance by efficiently utilizing video action recognition networks and adapting these to the problem of action localization. To this end, we first develop a density-guided label smoothing technique based on label probability distributions to facilitate better learning from boundary video-segments that typically include multiple labels. Second, we design a post-processing step to efficiently fuse information from video-segments and multiple camera views into scene-level predictions, which facilitates elimination of false positives. Our methodology yields a competitive performance on the A2 test set of the naturalistic driving action recognition track of the 2022 NVIDIA AI City Challenge with an F1 score of 0.271.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2403.06616
Document Type :
Working Paper
Full Text :
https://doi.org/10.1109/CVPRW56347.2022.00358