Back to Search Start Over

Cosine Scoring with Uncertainty for Neural Speaker Embedding

Authors :
Wang, Qiongqiong
Lee, Kong Aik
Source :
IEEE Signal Processing Letters 2024
Publication Year :
2024

Abstract

Uncertainty modeling in speaker representation aims to learn the variability present in speech utterances. While the conventional cosine-scoring is computationally efficient and prevalent in speaker recognition, it lacks the capability to handle uncertainty. To address this challenge, this paper proposes an approach for estimating uncertainty at the speaker embedding front-end and propagating it to the cosine scoring back-end. Experiments conducted on the VoxCeleb and SITW datasets confirmed the efficacy of the proposed method in handling uncertainty arising from embedding estimation. It achieved improvement with 8.5% and 9.8% average reductions in EER and minDCF compared to the conventional cosine similarity. It is also computationally efficient in practice.<br />Comment: 5 pages, 4 figures

Details

Database :
arXiv
Journal :
IEEE Signal Processing Letters 2024
Publication Type :
Report
Accession number :
edsarx.2403.06404
Document Type :
Working Paper
Full Text :
https://doi.org/10.1109/LSP.2024.3375080