Back to Search Start Over

Bias-Augmented Consistency Training Reduces Biased Reasoning in Chain-of-Thought

Authors :
Chua, James
Rees, Edward
Batra, Hunar
Bowman, Samuel R.
Michael, Julian
Perez, Ethan
Turpin, Miles
Publication Year :
2024

Abstract

While chain-of-thought prompting (CoT) has the potential to improve the explainability of language model reasoning, it can systematically misrepresent the factors influencing models' behavior--for example, rationalizing answers in line with a user's opinion without mentioning this bias. To mitigate this biased reasoning problem, we introduce bias-augmented consistency training (BCT), an unsupervised fine-tuning scheme that trains models to give consistent reasoning across prompts with and without biasing features. We construct a suite testing nine forms of biased reasoning on seven question-answering tasks, and find that applying BCT to GPT-3.5-Turbo with one bias reduces the rate of biased reasoning by 86% on held-out tasks. Moreover, this model generalizes to other forms of bias, reducing biased reasoning on held-out biases by an average of 37%. As BCT generalizes to held-out biases and does not require gold labels, this method may hold promise for reducing biased reasoning from as-of-yet unknown biases and on tasks where supervision for ground truth reasoning is unavailable.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2403.05518
Document Type :
Working Paper