Back to Search
Start Over
Self-Evaluation of Large Language Model based on Glass-box Features
- Publication Year :
- 2024
-
Abstract
- The proliferation of open-source Large Language Models (LLMs) underscores the pressing need for evaluation methods. Existing works primarily rely on external evaluators, focusing on training and prompting strategies. However, a crucial aspect, model-aware glass-box features, is overlooked. In this study, we explore the utility of glass-box features under the scenario of self-evaluation, namely applying an LLM to evaluate its own output. We investigate various glass-box feature groups and discovered that the softmax distribution serves as a reliable quality indicator for self-evaluation. Experimental results on public benchmarks validate the feasibility of self-evaluation of LLMs using glass-box features.<br />Comment: accepted as Findings of EMNLP2024
- Subjects :
- Computer Science - Computation and Language
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2403.04222
- Document Type :
- Working Paper