Back to Search
Start Over
Ruin Probability Approximation for Bidimensional Brownian Risk Model with Tax
- Publication Year :
- 2024
-
Abstract
- Let $\mathbf{B}(t)=(B_1(t), B_2(t))$, $t\geq 0$ be a two-dimensional Brownian motion with independent components and define the $\mathbf{\gamma}$-reflected process $$\mathbf{X}(t)=(X_1(t),X_2(t))=\left(B_1(t)-c_1t-\gamma_1\inf_{s_1\in[0,t]}(B_1(s_1)-c_1s_1),B_2(t)-c_2t-\gamma_2\inf_{s_2\in[0,t]}(B_2(s_2)-c_2s_2)\right),$$ with given finite constants $c_1,c_2$ and $\gamma_1,\gamma_2\in[0,2)$. The goal of this paper is to derive the asymptotics of the ruin probability $$\mathbb{P}\{\exists_{t\in[0,T]}: X_1(t)>u,X_2(t)>au\}$$ as $u\to\infty$ and $T>0$.<br />Comment: 22 pages, 15 references
- Subjects :
- Mathematics - Probability
Primary 60G15, secondary 60G70
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2403.02941
- Document Type :
- Working Paper