Back to Search Start Over

Investigating the Physical Properties of Traversable Wormholes in the Modified $f(R,T)$ Gravity

Authors :
Lu, Jianbo
Xu, Mou
Guo, Jing
Li, Ruonan
Source :
General Relativity and Gravitation (2024) 56:37
Publication Year :
2024

Abstract

In the paper, we analyze some physical properties of static traversable WH within the framework of $f(R,T)$ modified gravitational theory. Firstly, we explore the validity of the null, weak, dominant and strong energy conditions for wormhole matter for the considered $f(R,T)=R+\alpha R^2+\lambda T$ model. Research shows that it is possible to obtain traversable WH geometry without bring in exotic matter that violates the null energy condition in the $f(R,T)$ theory. The violation of the dominant energy condition in this model may be related to quantum fluctuations or indicates the existence of special matter that violates this EC within the wormhole. Moreover, it is found that in the $f(R,T)=R+\alpha R^2+\lambda T$ model, relative to the GR, the introduction of the geometric term $\alpha R^2$ has no remarkable impact on the wormhole matter components and their properties, while the appearance of the matter-geometry coupling term $\lambda T$ can resolve the question that WH matter violates the null, weak and strong energy condition in GR. Additionally, we investigate dependency of the valid NEC on model parameters and quantify the matter components within the wormhole using the ``volume integral quantifier". Lastly, based on the modified Tolman-Oppenheimer-Volkov equation, we find that the traversable WH in this theory is stable. On the other hand, we use the classical reconstruction technique to derive wormhole solution in $f(R,T)$ theory and discuss the corresponding ECs of matter. It is found that all four ECs (NEC, WEC, SEC and DEC) of matter in the traversable wormholes are valid in this reconstructed $f(R,T)$ model, i.e we provide a wormhole solution without introducing the exotic matter and special matter in $f(R,T)$ theory.<br />Comment: 17 pages, 8 figures

Details

Database :
arXiv
Journal :
General Relativity and Gravitation (2024) 56:37
Publication Type :
Report
Accession number :
edsarx.2403.01828
Document Type :
Working Paper
Full Text :
https://doi.org/10.1007/s10714-024-03223-x