Back to Search
Start Over
NPHardEval4V: A Dynamic Reasoning Benchmark of Multimodal Large Language Models
- Publication Year :
- 2024
-
Abstract
- Understanding the reasoning capabilities of Multimodal Large Language Models (MLLMs) is an important area of research. In this study, we introduce a dynamic benchmark, NPHardEval4V, aimed at addressing the existing gaps in evaluating the pure reasoning abilities of MLLMs. Our benchmark aims to provide a venue to disentangle the effect of various factors such as image recognition and instruction following, from the overall performance of the models, allowing us to focus solely on evaluating their reasoning abilities. It is built by converting textual description of questions from NPHardEval to image representations. Our findings reveal significant discrepancies in reasoning abilities across different models and highlight the relatively weak performance of MLLMs compared to LLMs in terms of reasoning. We also investigate the impact of different prompting styles, including visual, text, and combined visual and text prompts, on the reasoning abilities of MLLMs, demonstrating the different impacts of multimodal inputs in model performance. Unlike traditional benchmarks, which focus primarily on static evaluations, our benchmark will be updated monthly to prevent overfitting and ensure a more authentic and fine-grained evaluation of the models. We believe that this benchmark can aid in understanding and guide the further development of reasoning abilities in MLLMs. The benchmark dataset and code are available at https://github.com/lizhouf/NPHardEval4V<br />Comment: 16 pages, 10 figures, 2 tables
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2403.01777
- Document Type :
- Working Paper