Back to Search Start Over

Square-difference factor absorbing ideals of a commutative ring

Authors :
Anderson, David F.
Badawi, Ayman
Coykendall, Jim
Publication Year :
2024

Abstract

Let $R$ be a commutative ring with $1 \neq 0$. A proper ideal $I$ of $R$ is a {\it square-difference factor absorbing ideal} (sdf-absorbing ideal) of $R$ if whenever $a^2 - b^2 \in I$ for $0 \neq a, b \in R$, then $a + b \in I$ or $a - b \in I$. In this paper, we introduce and investigate sdf-absorbing ideals.<br />Comment: 18 pages

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2402.18704
Document Type :
Working Paper