Back to Search
Start Over
Square-difference factor absorbing ideals of a commutative ring
- Publication Year :
- 2024
-
Abstract
- Let $R$ be a commutative ring with $1 \neq 0$. A proper ideal $I$ of $R$ is a {\it square-difference factor absorbing ideal} (sdf-absorbing ideal) of $R$ if whenever $a^2 - b^2 \in I$ for $0 \neq a, b \in R$, then $a + b \in I$ or $a - b \in I$. In this paper, we introduce and investigate sdf-absorbing ideals.<br />Comment: 18 pages
- Subjects :
- Mathematics - Commutative Algebra
13A15, 13F05, 13G05
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2402.18704
- Document Type :
- Working Paper