Back to Search Start Over

LCEN: A Novel Feature Selection Algorithm for Nonlinear, Interpretable Machine Learning Models

Authors :
Seber, Pedro
Braatz, Richard D.
Publication Year :
2024

Abstract

Interpretable architectures can have advantages over black-box architectures, and interpretability is essential for the application of machine learning in critical settings, such as aviation or medicine. However, the simplest, most commonly used interpretable architectures, such as LASSO or elastic net (EN), are limited to linear predictions and have poor feature selection capabilities. In this work, we introduce the LASSO-Clip-EN (LCEN) algorithm for the creation of nonlinear, interpretable machine learning models. LCEN is tested on a wide variety of artificial and empirical datasets, frequently creating more accurate, sparser models than other architectures, including those for building sparse, nonlinear models. LCEN is robust against many issues typically present in datasets and modeling, including noise, multicollinearity, data scarcity, and hyperparameter variance. LCEN is also able to rediscover multiple physical laws from empirical data and, for processes with no known physical laws, LCEN achieves better results than many other dense and sparse methods -- including using 10.8-fold fewer features than dense methods and 8.1-fold fewer features than EN on one dataset, and is comparable to or better than ANNs on multiple datasets.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2402.17120
Document Type :
Working Paper