Back to Search
Start Over
Understanding the Dataset Practitioners Behind Large Language Model Development
- Publication Year :
- 2024
-
Abstract
- As large language models (LLMs) become more advanced and impactful, it is increasingly important to scrutinize the data that they rely upon and produce. What is it to be a dataset practitioner doing this work? We approach this in two parts: first, we define the role of "dataset practitioners" by performing a retrospective analysis on the responsibilities of teams contributing to LLM development at a technology company, Google. Then, we conduct semi-structured interviews with a cross-section of these practitioners (N=10). We find that although data quality is a top priority, there is little consensus around what data quality is and how to evaluate it. Consequently, practitioners either rely on their own intuition or write custom code to evaluate their data. We discuss potential reasons for this phenomenon and opportunities for alignment.<br />Comment: 7 pages, 2 figures. To be published in In Extended Abstracts of the CHI Conference on Human Factors in Computing Systems (CHI EA '24). Revised to reflect updates from CHI LBW reviewer feedback
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2402.16611
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1145/3613905.3651007