Back to Search Start Over

Optimizing Neural Networks for Bermudan Option Pricing: Convergence Acceleration, Future Exposure Evaluation and Interpolation in Counterparty Credit Risk

Authors :
Dhandapani, Vikranth Lokeshwar
Jain, Shashi
Publication Year :
2024

Abstract

This paper presents a Monte-Carlo-based artificial neural network framework for pricing Bermudan options, offering several notable advantages. These advantages encompass the efficient static hedging of the target Bermudan option and the effective generation of exposure profiles for risk management. We also introduce a novel optimisation algorithm designed to expedite the convergence of the neural network framework proposed by Lokeshwar et al. (2022) supported by a comprehensive error convergence analysis. We conduct an extensive comparative analysis of the Present Value (PV) distribution under Markovian and no-arbitrage assumptions. We compare the proposed neural network model in conjunction with the approach initially introduced by Longstaff and Schwartz (2001) and benchmark it against the COS model, the pricing model pioneered by Fang and Oosterlee (2009), across all Bermudan exercise time points. Additionally, we evaluate exposure profiles, including Expected Exposure and Potential Future Exposure, generated by our proposed model and the Longstaff-Schwartz model, comparing them against the COS model. We also derive exposure profiles at finer non-standard grid points or risk horizons using the proposed approach, juxtaposed with the Longstaff Schwartz method with linear interpolation and benchmark against the COS method. In addition, we explore the effectiveness of various interpolation schemes within the context of the Longstaff-Schwartz method for generating exposures at finer grid horizons.<br />Comment: 34 pages

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2402.15936
Document Type :
Working Paper