Back to Search Start Over

RealDex: Towards Human-like Grasping for Robotic Dexterous Hand

Authors :
Liu, Yumeng
Yang, Yaxun
Wang, Youzhuo
Wu, Xiaofei
Wang, Jiamin
Yao, Yichen
Schwertfeger, Sören
Yang, Sibei
Wang, Wenping
Yu, Jingyi
He, Xuming
Ma, Yuexin
Publication Year :
2024

Abstract

In this paper, we introduce RealDex, a pioneering dataset capturing authentic dexterous hand grasping motions infused with human behavioral patterns, enriched by multi-view and multimodal visual data. Utilizing a teleoperation system, we seamlessly synchronize human-robot hand poses in real time. This collection of human-like motions is crucial for training dexterous hands to mimic human movements more naturally and precisely. RealDex holds immense promise in advancing humanoid robot for automated perception, cognition, and manipulation in real-world scenarios. Moreover, we introduce a cutting-edge dexterous grasping motion generation framework, which aligns with human experience and enhances real-world applicability through effectively utilizing Multimodal Large Language Models. Extensive experiments have demonstrated the superior performance of our method on RealDex and other open datasets. The complete dataset and code will be made available upon the publication of this work.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2402.13853
Document Type :
Working Paper