Back to Search Start Over

Emulating the interstellar medium chemistry with neural operators

Authors :
Branca, Lorenzo
Pallottini, Andrea
Publication Year :
2024

Abstract

Galaxy formation and evolution critically depend on understanding the complex photo-chemical processes that govern the evolution and thermodynamics of the InterStellar Medium (ISM). Computationally, solving chemistry is among the most heavy tasks in cosmological and astrophysical simulations. The evolution of such non-equilibrium photo-chemical network relies on implicit, precise, computationally costly, ordinary differential equations (ODE) solvers. Here, we aim at substituting such procedural solvers with fast, pre-trained, emulators based on neural operators. We emulate a non-equilibrium chemical network up to H$_2$ formation (9 species, 52 reactions) by adopting the DeepONet formalism, i.e. by splitting the ODE solver operator that maps the initial conditions and time evolution into a tensor product of two neural networks. We use $\texttt{KROME}$ to generate a training set spanning $-2\leq \log(n/\mathrm{cm}^{-3}) \leq 3.5$, $\log(20) \leq\log(T/\mathrm{K}) \leq 5.5$, $-6 \leq \log(n_i/n) < 0$, and by adopting an incident radiation field $\textbf{F}$ sampled in 10 energy bins with a continuity prior. We separately train the solver for $T$ and each $n_i$ for $\simeq 4.34\,\rm GPUhrs$. Compared with the reference solutions obtained by $\texttt{KROME}$ for single zone models, the typical precision obtained is of order $10^{-2}$, i.e. the $10 \times$ better with a training that is $40 \times$ less costly with respect to previous emulators which however considered only a fixed $\mathbf{F}$. The present model achieves a speed-up of a factor of $128 \times$ with respect to stiff ODE solvers. Our neural emulator represents a significant leap forward in the modeling of ISM chemistry, offering a good balance of precision, versatility, and computational efficiency.<br />Comment: 13 pages, 5 figures, Accepted for publication in A&A

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2402.12435
Document Type :
Working Paper