Back to Search
Start Over
Differentially Private Training of Mixture of Experts Models
- Publication Year :
- 2024
-
Abstract
- This position paper investigates the integration of Differential Privacy (DP) in the training of Mixture of Experts (MoE) models within the field of natural language processing. As Large Language Models (LLMs) scale to billions of parameters, leveraging expansive datasets, they exhibit enhanced linguistic capabilities and emergent abilities. However, this growth raises significant computational and privacy concerns. Our study addresses these issues by exploring the potential of MoE models, known for their computational efficiency, and the application of DP, a standard for privacy preservation. We present the first known attempt to train MoE models under the constraints of DP, addressing the unique challenges posed by their architecture and the complexities of DP integration. Our initial experimental studies demonstrate that MoE models can be effectively trained with DP, achieving performance that is competitive with their non-private counterparts. This initial study aims to provide valuable insights and ignite further research in the domain of privacy-preserving MoE models, softly laying the groundwork for prospective developments in this evolving field.<br />Comment: Preliminary work presented as a poster at the 5th AAAI Workshop on Privacy-Preserving Artificial Intelligence (PPAI 24)
- Subjects :
- Computer Science - Cryptography and Security
Computer Science - Machine Learning
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2402.07334
- Document Type :
- Working Paper