Back to Search Start Over

Fairness of Exposure in Online Restless Multi-armed Bandits

Authors :
Sood, Archit
Jain, Shweta
Gujar, Sujit
Publication Year :
2024

Abstract

Restless multi-armed bandits (RMABs) generalize the multi-armed bandits where each arm exhibits Markovian behavior and transitions according to their transition dynamics. Solutions to RMAB exist for both offline and online cases. However, they do not consider the distribution of pulls among the arms. Studies have shown that optimal policies lead to unfairness, where some arms are not exposed enough. Existing works in fairness in RMABs focus heavily on the offline case, which diminishes their application in real-world scenarios where the environment is largely unknown. In the online scenario, we propose the first fair RMAB framework, where each arm receives pulls in proportion to its merit. We define the merit of an arm as a function of its stationary reward distribution. We prove that our algorithm achieves sublinear fairness regret in the single pull case $O(\sqrt{T\ln T})$, with $T$ being the total number of episodes. Empirically, we show that our algorithm performs well in the multi-pull scenario as well.<br />Comment: Accepted as extended abstract in AAMAS 2024

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2402.06348
Document Type :
Working Paper