Back to Search Start Over

A Physics-Informed Auto-Learning Framework for Developing Stochastic Conceptual Models for ENSO Diversity

Authors :
Zhang, Yinling
Chen, Nan
Vialard, Jerome
Fang, Xianghui
Publication Year :
2024

Abstract

Understanding ENSO dynamics has tremendously improved over the past decades. However, one aspect still poorly understood or represented in conceptual models is the ENSO diversity in spatial pattern, peak intensity, and temporal evolution. In this paper, a physics-informed auto-learning framework is developed to derive ENSO stochastic conceptual models with varying degrees of freedom. The framework is computationally efficient and easy to apply. Once the state vector of the target model is set, causal inference is exploited to build the right-hand side of the equations based on a mathematical function library. Fundamentally different from standard nonlinear regression, the auto-learning framework provides a parsimonious model by retaining only terms that improve the dynamical consistency with observations. It can also identify crucial latent variables and provide physical explanations. Exploiting a realistic six-dimensional reference recharge oscillator-based ENSO model, a hierarchy of three- to six-dimensional models is derived using the auto-learning framework and is systematically validated by a unified set of validation criteria assessing the dynamical and statistical features of the ENSO diversity. It is shown that the minimum model characterizing ENSO diversity is four-dimensional, with three interannual variables describing the western Pacific thermocline depth, the eastern and central Pacific sea surface temperatures (SSTs), and one intraseasonal variable for westerly wind events. Without the intraseasonal variable, the resulting three-dimensional model underestimates extreme events and is too regular. The limited number of weak nonlinearities in the model are essential in reproducing the observed extreme El Ni\~nos and nonlinear relationship between the eastern and western Pacific SSTs.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2402.04585
Document Type :
Working Paper