Back to Search
Start Over
Cosmography with next-generation gravitational wave detectors
- Source :
- Class. Quantum Grav. 41 (2024) 125004
- Publication Year :
- 2024
-
Abstract
- Advancements in cosmology through next-generation ground-based gravitational wave observatories will bring in a paradigm shift. We explore the pivotal role that gravitational-wave standard sirens will play in inferring cosmological parameters with next-generation observatories, not only achieving exquisite precision but also opening up unprecedented redshifts. We examine the merits and the systematic biases involved in gravitational-wave standard sirens utilizing binary black holes, binary neutron stars, and neutron star-black hole mergers. Further, we estimate the precision of bright sirens, golden dark sirens, and spectral sirens for these binary coalescences and compare the abilities of various next-generation observatories (A^sharp, Cosmic Explorer, Einstein Telescope, and their possible networks). When combining different sirens, we find sub-percent precision over more than 10 billion years of cosmic evolution for the Hubble expansion rate $H(z)$. This work presents a broad view of opportunities to precisely measure the cosmic expansion rate, decipher the elusive dark energy and dark matter, and potentially discover new physics in the uncharted Universe with next-generation gravitational-wave detectors.<br />Comment: 27 pages, 11 figures. Invited article for special CQG issue on the science of next-generation terrestrial gravitational wave detectors. Matches published version
Details
- Database :
- arXiv
- Journal :
- Class. Quantum Grav. 41 (2024) 125004
- Publication Type :
- Report
- Accession number :
- edsarx.2402.03120
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1088/1361-6382/ad424f