Back to Search Start Over

Optimal Quality and Efficiency in Adaptive Live Streaming with JND-Aware Low latency Encoding

Authors :
Menon, Vignesh V
Zhu, Jingwen
Rajendran, Prajit T
Afzal, Samira
Schoeffmann, Klaus
Callet, Patrick Le
Timmerer, Christian
Publication Year :
2024

Abstract

In HTTP adaptive live streaming applications, video segments are encoded at a fixed set of bitrate-resolution pairs known as bitrate ladder. Live encoders use the fastest available encoding configuration, referred to as preset, to ensure the minimum possible latency in video encoding. However, an optimized preset and optimized number of CPU threads for each encoding instance may result in (i) increased quality and (ii) efficient CPU utilization while encoding. For low latency live encoders, the encoding speed is expected to be more than or equal to the video framerate. To this light, this paper introduces a Just Noticeable Difference (JND)-Aware Low latency Encoding Scheme (JALE), which uses random forest-based models to jointly determine the optimized encoder preset and thread count for each representation, based on video complexity features, the target encoding speed, the total number of available CPU threads, and the target encoder. Experimental results show that, on average, JALE yield a quality improvement of 1.32 dB PSNR and 5.38 VMAF points with the same bitrate, compared to the fastest preset encoding of the HTTP Live Streaming (HLS) bitrate ladder using x265 HEVC open-source encoder with eight CPU threads used for each representation. These enhancements are achieved while maintaining the desired encoding speed. Furthermore, on average, JALE results in an overall storage reduction of 72.70 %, a reduction in the total number of CPU threads used by 63.83 %, and a 37.87 % reduction in the overall encoding time, considering a JND of six VMAF points.<br />Comment: 2024 Mile High Video (MHV)

Subjects

Subjects :
Computer Science - Multimedia

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2401.15343
Document Type :
Working Paper
Full Text :
https://doi.org/10.1145/3638036.3640807