Back to Search Start Over

Shortcuts Everywhere and Nowhere: Exploring Multi-Trigger Backdoor Attacks

Authors :
Li, Yige
He, Jiabo
Huang, Hanxun
Sun, Jun
Ma, Xingjun
Publication Year :
2024

Abstract

Backdoor attacks have become a significant threat to the pre-training and deployment of deep neural networks (DNNs). Although numerous methods for detecting and mitigating backdoor attacks have been proposed, most rely on identifying and eliminating the ``shortcut" created by the backdoor, which links a specific source class to a target class. However, these approaches can be easily circumvented by designing multiple backdoor triggers that create shortcuts everywhere and therefore nowhere specific. In this study, we explore the concept of Multi-Trigger Backdoor Attacks (MTBAs), where multiple adversaries leverage different types of triggers to poison the same dataset. By proposing and investigating three types of multi-trigger attacks including \textit{parallel}, \textit{sequential}, and \textit{hybrid} attacks, we demonstrate that 1) multiple triggers can coexist, overwrite, or cross-activate one another, and 2) MTBAs easily break the prevalent shortcut assumption underlying most existing backdoor detection/removal methods, rendering them ineffective. Given the security risk posed by MTBAs, we have created a multi-trigger backdoor poisoning dataset to facilitate future research on detecting and mitigating these attacks, and we also discuss potential defense strategies against MTBAs.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2401.15295
Document Type :
Working Paper