Back to Search Start Over

CustomVideo: Customizing Text-to-Video Generation with Multiple Subjects

Authors :
Wang, Zhao
Li, Aoxue
Zhu, Lingting
Guo, Yong
Dou, Qi
Li, Zhenguo
Publication Year :
2024

Abstract

Customized text-to-video generation aims to generate high-quality videos guided by text prompts and subject references. Current approaches for personalizing text-to-video generation suffer from tackling multiple subjects, which is a more challenging and practical scenario. In this work, our aim is to promote multi-subject guided text-to-video customization. We propose CustomVideo, a novel framework that can generate identity-preserving videos with the guidance of multiple subjects. To be specific, firstly, we encourage the co-occurrence of multiple subjects via composing them in a single image. Further, upon a basic text-to-video diffusion model, we design a simple yet effective attention control strategy to disentangle different subjects in the latent space of diffusion model. Moreover, to help the model focus on the specific area of the object, we segment the object from given reference images and provide a corresponding object mask for attention learning. Also, we collect a multi-subject text-to-video generation dataset as a comprehensive benchmark, with 63 individual subjects from 13 different categories and 68 meaningful pairs. Extensive qualitative, quantitative, and user study results demonstrate the superiority of our method compared to previous state-of-the-art approaches. The project page is https://kyfafyd.wang/projects/customvideo.<br />Comment: 18 pages, 11 figures, 7 tables

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2401.09962
Document Type :
Working Paper