Back to Search
Start Over
Role of $\rho-\omega$ interference in semileptonic $B \to \pi^+ \pi^- \ell \bar \nu_\ell$ decays
- Source :
- Phys. Rev. D 109, 074040 (2024)
- Publication Year :
- 2024
-
Abstract
- It is long known that interference effects play an important role in understanding the shape of the $\pi^+\pi^-$ spectrum of resonances near the threshold. In this manuscript we investigate the role of the $\rho-\omega$ interference in the study of semileptonic $B \to \pi^+ \pi^- \ell \bar \nu_\ell$ decays. We determine for the first time the strong phase between $B \to \rho^0 \ell \bar \nu_\ell$ and $B \to \omega \ell \bar \nu_\ell$ from a recent Belle measurement of the $m_{\pi\pi}$ spectrum of $B \to \pi^+ \pi^- \ell \bar \nu_\ell$. We find $ \phi_{\rho-\omega} = \left( -46_{-67}^{+155} \right)\unicode{xb0}$ and extract the branching fraction of $\mathcal{B}(B \to \rho^0 \ell \bar \nu_\ell) = \left(1.41_{-0.38}^{+0.49} \right) \times 10^{-4} $. In addition, we set a limit on the $S$-wave component within a mass window ranging from $2 m_\pi$ to $1.02 \, \mathrm{GeV}$ of $ 0.51 \times 10^{-4} \,\, \mathrm{at} \, \, 90\% \, \mathrm{CL} $. We also determine the absolute value of the Cabibbo-Kobayashi-Maskawa matrix element of $|V_{ub}|_{\rho-\omega} = \left( 3.03^{+0.49}_{-0.44} \right) \times 10^{-3}$, which takes into account the $\rho-\omega$ interference.<br />Comment: 13 pages, 16 figures
- Subjects :
- High Energy Physics - Phenomenology
High Energy Physics - Experiment
Subjects
Details
- Database :
- arXiv
- Journal :
- Phys. Rev. D 109, 074040 (2024)
- Publication Type :
- Report
- Accession number :
- edsarx.2401.08779
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1103/PhysRevD.109.074040