Back to Search
Start Over
The Combinatorics of Motzkin Polyominoes
- Publication Year :
- 2024
-
Abstract
- A word $w=w_1\cdots w_n$ over the set of positive integers is a Motzkin word whenever $w_1=\texttt{1}$, $1\leq w_k\leq w_{k-1}+1$, and $w_{k-1}\neq w_{k}$ for $k=2, \dots, n$. It can be associated to a $n$-column Motzkin polyomino whose $i$-th column contains $w_i$ cells, and all columns are bottom-justified. We reveal bijective connections between Motzkin paths, restricted Catalan words, primitive \L{}ukasiewicz paths, and Motzkin polyominoes. Using the aforementioned bijections together with classical one-to-one correspondence with Dyck paths avoiding $UDU$s, we provide generating functions with respect to the length, area, semiperimeter, value of the last symbol, and number of interior points of Motzkin polyominoes. We give asymptotics and closed-form expressions for the total area, total semiperimeter, sum of the last symbol values, and total number of interior points over all Motzkin polyominoes of a given length. We also present and prove an engaging trinomial relation concerning the number of cells lying at different levels and first terms of the expanded $(1+x+x^2)^n$.<br />Comment: 21 pages, 11 figures
- Subjects :
- Mathematics - Combinatorics
Computer Science - Discrete Mathematics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2401.06228
- Document Type :
- Working Paper