Back to Search Start Over

Physics-based vs. data-driven 24-hour probabilistic forecasts of precipitation for northern tropical Africa

Authors :
Walz, Eva-Maria
Knippertz, Peter
Fink, Andreas H.
Köhler, Gregor
Gneiting, Tilmann
Publication Year :
2024

Abstract

Numerical weather prediction (NWP) models struggle to skillfully predict tropical precipitation occurrence and amount, calling for alternative approaches. For instance, it has been shown that fairly simple, purely data-driven logistic regression models for 24-hour precipitation occurrence outperform both climatological and NWP forecasts for the West African summer monsoon. More complex neural network based approaches, however, remain underdeveloped due to the non-Gaussian character of precipitation. In this study, we develop, apply and evaluate a novel two-stage approach, where we train a U-Net convolutional neural network (CNN) model on gridded rainfall data to obtain a deterministic forecast and then apply the recently developed, nonparametric Easy Uncertainty Quantification (EasyUQ) approach to convert it into a probabilistic forecast. We evaluate CNN+EasyUQ for one-day ahead 24-hour accumulated precipitation forecasts over northern tropical Africa for 2011--2019, with the Integrated Multi-satellitE Retrievals for GPM (IMERG) data serving as ground truth. In the most comprehensive assessment to date we compare CNN+EasyUQ to state-of-the-art physics-based and data-driven approaches such as a monthly probabilistic climatology, raw and postprocessed ensemble forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF), and traditional statistical approaches that use up to 25 predictor variables from IMERG and the ERA5 reanalysis.Generally, statistical approaches perform about en par with post-processed ECMWF ensemble forecasts. The CNN+EasyUQ approach, however, clearly outperforms all competitors for both occurrence and amount. Hybrid methods that merge CNN+EasyUQ and physics-based forecasts show slight further improvement. Thus, the CNN+EasyUQ approach can likely improve operational probabilistic forecasts of rainfall in the tropics, and potentially even beyond.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2401.03746
Document Type :
Working Paper