Back to Search
Start Over
Physics-based vs. data-driven 24-hour probabilistic forecasts of precipitation for northern tropical Africa
- Publication Year :
- 2024
-
Abstract
- Numerical weather prediction (NWP) models struggle to skillfully predict tropical precipitation occurrence and amount, calling for alternative approaches. For instance, it has been shown that fairly simple, purely data-driven logistic regression models for 24-hour precipitation occurrence outperform both climatological and NWP forecasts for the West African summer monsoon. More complex neural network based approaches, however, remain underdeveloped due to the non-Gaussian character of precipitation. In this study, we develop, apply and evaluate a novel two-stage approach, where we train a U-Net convolutional neural network (CNN) model on gridded rainfall data to obtain a deterministic forecast and then apply the recently developed, nonparametric Easy Uncertainty Quantification (EasyUQ) approach to convert it into a probabilistic forecast. We evaluate CNN+EasyUQ for one-day ahead 24-hour accumulated precipitation forecasts over northern tropical Africa for 2011--2019, with the Integrated Multi-satellitE Retrievals for GPM (IMERG) data serving as ground truth. In the most comprehensive assessment to date we compare CNN+EasyUQ to state-of-the-art physics-based and data-driven approaches such as a monthly probabilistic climatology, raw and postprocessed ensemble forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF), and traditional statistical approaches that use up to 25 predictor variables from IMERG and the ERA5 reanalysis.Generally, statistical approaches perform about en par with post-processed ECMWF ensemble forecasts. The CNN+EasyUQ approach, however, clearly outperforms all competitors for both occurrence and amount. Hybrid methods that merge CNN+EasyUQ and physics-based forecasts show slight further improvement. Thus, the CNN+EasyUQ approach can likely improve operational probabilistic forecasts of rainfall in the tropics, and potentially even beyond.
- Subjects :
- Physics - Atmospheric and Oceanic Physics
Statistics - Applications
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2401.03746
- Document Type :
- Working Paper