Back to Search
Start Over
Millikelvin confocal microscope with free-space access and high-frequency electrical control
- Publication Year :
- 2024
-
Abstract
- Cryogenic confocal microscopy is a powerful method for studying solid state quantum devices such as single photon sources and optically controlled qubits. While the vast majority of such studies have been conducted at temperatures of a few Kelvin, experiments involving fragile quantum effects often require lower operating temperatures. To also allow for electrical dynamic control, microwave connectivity is required. For polarization-sensitive studies, free space optical access is advantageous compared to fiber coupling. Here we present a confocal microscope in a dilution refrigerator providing all the above features at temperatures below 100 mK. The installed high frequency cabling meets the requirements for state of the art spin qubit experiments. As another unique advantage of our system, the sample fitting inside a large puck can be exchanged while keeping the cryostat cold with minimal realignment. Assessing the performance of the instrument, we demonstrate confocal imaging, sub-nanosecond modulation of the emission wavelength of a suitable sample and an electron temperature of 76 mK. While the instrument was constructed primarily with the development of optical interfaces to electrically controlled qubits in mind, it can be used for many experiments involving quantum transport, solid state quantum optics and microwave-optical transducers.<br />Comment: 9 pages, 5 figures
- Subjects :
- Physics - Applied Physics
Condensed Matter - Mesoscale and Nanoscale Physics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2401.03266
- Document Type :
- Working Paper