Back to Search Start Over

Filtered data based estimators for stochastic processes driven by colored noise

Authors :
Pavliotis, Grigorios A.
Reich, Sebastian
Zanoni, Andrea
Publication Year :
2023

Abstract

We consider the problem of estimating unknown parameters in stochastic differential equations driven by colored noise, which we model as a sequence of Gaussian stationary processes with decreasing correlation time. We aim to infer parameters in the limit equation, driven by white noise, given observations of the colored noise dynamics. We consider both the maximum likelihood and the stochastic gradient descent in continuous time estimators, and we propose to modify them by including filtered data. We provide a convergence analysis for our estimators showing their asymptotic unbiasedness in a general setting and asymptotic normality under a simplified scenario.

Subjects

Subjects :
Mathematics - Numerical Analysis

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2312.15975
Document Type :
Working Paper