Back to Search
Start Over
Concurrent Asynchronous Byzantine Agreement in Expected-Constant Rounds, Revisited
- Publication Year :
- 2023
-
Abstract
- It is well known that without randomization, Byzantine agreement (BA) requires a linear number of rounds in the synchronous setting, while it is flat out impossible in the asynchronous setting. The primitive which allows to bypass the above limitation is known as oblivious common coin (OCC). It allows parties to agree with constant probability on a random coin, where agreement is oblivious, i.e., players are not aware whether or not agreement has been achieved. The starting point of our work is the observation that no known protocol exists for information-theoretic multi-valued OCC with optimal resiliency in the asynchronous setting (with eventual message delivery). This apparent hole in the literature is particularly problematic, as multi-valued OCC is implicitly or explicitly used in several constructions. In this paper, we present the first information-theoretic multi-valued OCC protocol in the asynchronous setting with optimal resiliency, i.e., tolerating $t < n/3$ corruptions, thereby filling this important gap. Further, our protocol efficiently implements OCC with an exponential-size domain, a property which is not even achieved by known constructions in the simpler, synchronous setting. We then turn to the problem of round-preserving parallel composition of asynchronous BA. A protocol for this task was proposed by Ben-Or and El-Yaniv [Distributed Computing '03]. Their construction, however, is flawed in several ways. Thus, as a second contribution, we provide a simpler, more modular protocol for the above task. Finally, and as a contribution of independent interest, we provide proofs in Canetti's Universal Composability framework; this makes our work the first one offering composability guarantees, which are important as BA is a core building block of secure multi-party computation protocols.<br />Comment: A preliminary version of this work appeared in TCC 2023
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2312.14506
- Document Type :
- Working Paper