Back to Search Start Over

Layer-dependent evolution of electronic structures and correlations in rhombohedral multilayer graphene

Authors :
Zhou, Yue-Ying
Zhang, Yang
Zhang, Shihao
Cai, Hao
Tong, Ling-Hui
Tian, Yuan
Chen, Tongtong
Tian, Qiwei
Zhang, Chen
Wang, Yiliu
Zou, Xuming
Liu, Xingqiang
Hu, Yuanyuan
Zhang, Li
Zhang, Lijie
Wang, Wen-Xiao
Liao, Lei
Qin, Zhihui
Yin, Long-Jing
Publication Year :
2023

Abstract

The recent discovery of superconductivity and magnetism in trilayer rhombohedral graphene (RG) establishes an ideal, untwisted platform to study strong correlation electronic phenomena. However, the correlated effects in multilayer RG have received limited attention, and, particularly, the evolution of the correlations with increasing layer number remains an unresolved question. Here, we show the observation of layer-dependent electronic structures and correlations in RG multilayers from 3 to 9 layers by using scanning tunneling microscopy and spectroscopy. We explicitly determine layer-enhanced low-energy flat bands and interlayer coupling strength. The former directly demonstrates the further flattening of low-energy bands in thicker RG, and the later indicates the presence of varying interlayer interactions in RG multilayers. Moreover, we find significant splitting of the flat bands, ranging from ~50-80 meV, under liquid nitrogen temperature when they are partially filled, indicating the emergence of interaction-induced strongly correlated states. Particularly, the strength of the correlated states is notably enhanced in thicker RG and reaches its maximum in the six-layer, validating directly theoretical predictions and establishing abundant new candidates for strongly correlated systems. Our results provide valuable insights into the layer dependence of the electronic properties in RG, paving the way for investigating robust and highly accessible correlated phases in simpler systems.<br />Comment: 21 pages, 4 figures

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2312.13637
Document Type :
Working Paper