Back to Search Start Over

Spread complexity in saddle-dominated scrambling

Authors :
Huh, Kyoung-Bum
Jeong, Hyun-Sik
Pedraza, Juan F.
Source :
J. High Energ. Phys. 2024, 137 (2024)
Publication Year :
2023

Abstract

Recently, the concept of spread complexity, Krylov complexity for states, has been introduced as a measure of the complexity and chaoticity of quantum systems. In this paper, we study the spread complexity of the thermofield double state within \emph{integrable} systems that exhibit saddle-dominated scrambling. Specifically, we focus on the Lipkin-Meshkov-Glick model and the inverted harmonic oscillator as representative examples of quantum mechanical systems featuring saddle-dominated scrambling. Applying the Lanczos algorithm, our numerical investigation reveals that the spread complexity in these systems exhibits features reminiscent of \emph{chaotic} systems, displaying a distinctive ramp-peak-slope-plateau pattern. Our results indicate that, although spread complexity serves as a valuable probe, accurately diagnosing true quantum chaos generally necessitates additional physical input. We also explore the relationship between spread complexity, the spectral form factor, and the transition probability within the Krylov space. We provide analytical confirmation of our numerical results, validating the Ehrenfest theorem of complexity and identifying a distinct quadratic behavior in the early-time regime of spread complexity.<br />Comment: v1: 27 pages, 17 figures; v2: references added; v3: matching the published version

Details

Database :
arXiv
Journal :
J. High Energ. Phys. 2024, 137 (2024)
Publication Type :
Report
Accession number :
edsarx.2312.12593
Document Type :
Working Paper
Full Text :
https://doi.org/10.1007/JHEP05(2024)137