Back to Search Start Over

Learning Coalition Structures with Games

Authors :
Xu, Yixuan Even
Ling, Chun Kai
Fang, Fei
Publication Year :
2023

Abstract

Coalitions naturally exist in many real-world systems involving multiple decision makers such as ridesharing, security, and online ad auctions, but the coalition structure among the agents is often unknown. We propose and study an important yet previously overseen problem -- Coalition Structure Learning (CSL), where we aim to carefully design a series of games for the agents and infer the underlying coalition structure by observing their interactions in those games. We establish a lower bound on the sample complexity -- defined as the number of games needed to learn the structure -- of any algorithms for CSL and propose the Iterative Grouping (IG) algorithm for designing normal-form games to achieve the lower bound. We show that IG can be extended to other succinct games such as congestion games and graphical games. Moreover, we solve CSL in a more restrictive and practical setting: auctions. We show a variant of IG to solve CSL in the auction setting even if we cannot design the bidder valuations. Finally, we conduct experiments to evaluate IG in the auction setting and the results align with our theoretical analysis.<br />Comment: 13 pages, 4 figures, 3 tables, aaai 2024

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2312.09058
Document Type :
Working Paper