Back to Search Start Over

Parameterized Algorithms for Covering by Arithmetic Progressions

Authors :
Bliznets, Ivan
Nederlof, Jesper
Szilágyi, Krisztina
Publication Year :
2023

Abstract

An arithmetic progression is a sequence of integers in which the difference between any two consecutive elements is the same. We investigate the parameterized complexity of two problems related to arithmetic progressions, called Cover by Arithmetic Progressions (CAP) and Exact Cover by Arithmetic Progressions (XCAP). In both problems, we are given a set $X$ consisting of $n$ integers along with an integer $k$, and our goal is to find $k$ arithmetic progressions whose union is $X$. In XCAP we additionally require the arithmetic progressions to be disjoint. Both problems were shown to be NP-complete by Heath [IPL'90]. We present a $2^{O(k^2)} poly(n)$ time algorithm for CAP and a $2^{O(k^3)} poly(n)$ time algorithm for XCAP. We also give a fixed parameter tractable algorithm for CAP parameterized below some guaranteed solution size. We complement these findings by proving that CAP is Strongly NP-complete in the field $\mathbb{Z}_p$, if $p$ is a prime number part of the input.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2312.06393
Document Type :
Working Paper