Back to Search
Start Over
Redshift-dependent RSD bias from Intrinsic Alignment with DESI Year 1 Spectra
- Publication Year :
- 2023
-
Abstract
- We estimate the redshift-dependent, anisotropic clustering signal in DESI's Year 1 Survey created by tidal alignments of Luminous Red Galaxies (LRGs) and a selection-induced galaxy orientation bias. To this end, we measured the correlation between LRG shapes and the tidal field with DESI's Year 1 redshifts, as traced by LRGs and Emission-Line Galaxies (ELGs). We also estimate the galaxy orientation bias of LRGs caused by DESI's aperture-based selection, and find it to increase by a factor of seven between redshifts 0.4 - 1.1 due to redder, fainter galaxies falling closer to DESI's imaging selection cuts. These effects combine to dampen measurements of the quadrupole of the correlation function caused by structure growth on scales of 10 - 80 Mpc/h by about 0.15% for low redshifts (0.4<z<0.6) and 0.8% for high (0.8<z<1.1). We provide estimates of the quadrupole signal created by intrinsic alignments that can be used to correct this effect, which is necessary to meet DESI's forecasted precision on measuring the growth rate of structure. While imaging quality varies across DESI's footprint, we find no significant difference in this effect between imaging regions in the Legacy Imaging Survey.<br />Comment: 9 pages, 1 table, 9 figures. Accepted in MNRAS. For an accessible summary of this paper, see https://cmlamman.github.io/doc/fakeRSD_spectra_summary.pdf
- Subjects :
- Astrophysics - Cosmology and Nongalactic Astrophysics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2312.04518
- Document Type :
- Working Paper