Back to Search
Start Over
Existence and concentration of semiclassical bound states for a quasilinear Schr\'odinger-Poisson system
- Publication Year :
- 2023
-
Abstract
- In the paper we consider the following quasilinear Schr\"odinger--Poisson system in the whole space $\mathbb R^{3}$ $$ \begin{cases} - \varepsilon^2 \Delta u + (V + \phi) u = u |u|^{p - 1} \newline - \Delta \phi - \beta \Delta_4 \phi = u^2, \end{cases} $$ where $1 < p < 5, \beta > 0,V :\mathbb R^{3}\to ]0, \infty[$ and look for solutions $u,\phi:\mathbb R^{3}\to \mathbb R$ in the semiclassical regime, namely when $\varepsilon\to 0.$ By means of the Lyapunov--Schmidt method we estimate the number of solutions by the cup-length of the critical manifold of the external potential $V$.<br />Comment: 19 pages; comments are welcome
- Subjects :
- Mathematics - Analysis of PDEs
35J10, 35J50, 35Q60
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2312.03161
- Document Type :
- Working Paper