Back to Search Start Over

A novel design for 100 meter-scale water attenuation length measurement and monitoring

Authors :
Wang, Li
Xu, Jilei
Lu, Shuxiang
Lu, Haoqi
Wang, Zhimin
Li, Min
Wang, Sibo
Yang, Changgen
Zheng, Yichen
Publication Year :
2023

Abstract

Water Cherenov detector is a vital part in most of neutrino or cosmic ray research. As detectors grow in size, the water attenuation length (WAL) becomes increasingly essential for detector performance. It is essential to measure or monitor the WAL. While many experiments have measured WAL in the lab or detector, only the Super-Kamiokande experiment has achieved values exceeding 50 meters in the detector with a moving light source. However, it is impractical for many experiments to place a moving light source inside the detector, necessitating an alternative method for investigating long WAL. A novel system has been proposed to address the challenge of investigating long WAL. This system focuses on ample water Cherenkov detectors and features a fixed light source and photomultiplier tubes (PMTs) at varying distances, eliminating the need for moving parts. The static setup demands high precision for accurate measurement of long WAL. Each component, including LED, diffuse ball, PMTs, and fibers, is introduced to explain uncertainty control. Based on lab tests, the system's uncertainty has been controlled within 5\%. Additionally, camera technology is also used during the evaluation of the system uncertainty, which has the potential to replace PMTs in the future for this measurement. Monte Carlo simulations have shown that the system can achieve a 5\% measurement uncertainty at WAL of 80 meters and 8\% at WAL of 100 meters. This system can be used in experiments with large Cherenkov detectors such as JUNO water veto and Hyper-K.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2312.01293
Document Type :
Working Paper