Back to Search
Start Over
Optimal Functional Bilinear Regression with Two-way Functional Covariates via Reproducing Kernel Hilbert Space
- Publication Year :
- 2023
-
Abstract
- Traditional functional linear regression usually takes a one-dimensional functional predictor as input and estimates the continuous coefficient function. Modern applications often generate two-dimensional covariates, which become matrices when observed at grid points. To avoid the inefficiency of the classical method involving estimation of a two-dimensional coefficient function, we propose a functional bilinear regression model, and introduce an innovative three-term penalty to impose roughness penalty in the estimation. The proposed estimator exhibits minimax optimal property for prediction under the framework of reproducing kernel Hilbert space. An iterative generalized cross-validation approach is developed to choose tuning parameters, which significantly improves the computational efficiency over the traditional cross-validation approach. The statistical and computational advantages of the proposed method over existing methods are further demonstrated via simulated experiments, the Canadian weather data, and a biochemical long-range infrared light detection and ranging data.<br />Comment: 48 pages, 19 figures
- Subjects :
- Statistics - Methodology
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2311.12597
- Document Type :
- Working Paper