Back to Search Start Over

Evaluating Supervision Levels Trade-Offs for Infrared-Based People Counting

Authors :
Latortue, David
Kdayem, Moetez
Peña, Fidel A Guerrero
Granger, Eric
Pedersoli, Marco
Publication Year :
2023

Abstract

Object detection models are commonly used for people counting (and localization) in many applications but require a dataset with costly bounding box annotations for training. Given the importance of privacy in people counting, these models rely more and more on infrared images, making the task even harder. In this paper, we explore how weaker levels of supervision can affect the performance of deep person counting architectures for image classification and point-level localization. Our experiments indicate that counting people using a CNN Image-Level model achieves competitive results with YOLO detectors and point-level models, yet provides a higher frame rate and a similar amount of model parameters.<br />Comment: Accepted in IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2024

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2311.11974
Document Type :
Working Paper