Back to Search
Start Over
Fracture of bio-cemented sands
- Publication Year :
- 2023
-
Abstract
- Bio-chemical reactions enable the production of biomimetic materials such as sandstones. In the present study, microbiologically-induced calcium carbonate precipitation (MICP) is used to manufacture laboratory-scale specimens for fracture toughness measurement. The mode I and mixed-mode fracture toughnesses are measured as a function of cementation, and are correlated with strength, permeability and porosity. A micromechanical model is developed to predict the dependence of mode I fracture toughness upon the degree of cementation. In addition, the role of the crack tip $T$-stress in dictating kink angle and toughness is determined for mixed mode loading. At a sufficiently low degree of cementation, the zone of microcracking in the vicinity of the crack tip is sufficiently large for a crack tip $K$-field to cease to exist and for crack kinking theory to not apply. The interplay between cementation and fracture properties of sedimentary rocks is explained; this understanding underpins a wide range of rock fracture phenomena including hydraulic fracture.
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2311.07785
- Document Type :
- Working Paper