Back to Search Start Over

TRAFS: A Nonsmooth Convex Optimization Algorithm with $\mathcal{O}\left(\frac{1}{\epsilon}\right)$ Iteration Complexity

Authors :
Jia, Kai
Rinard, Martin
Publication Year :
2023

Abstract

We present the Trust Region Adversarial Functional Subdifferential (TRAFS) algorithm for constrained optimization of nonsmooth convex Lipschitz functions. Unlike previous methods that assume a subgradient oracle model, we work with the functional subdifferential defined as a set of subgradients that simultaneously captures sufficient local information for effective minimization while being easy to compute for a wide range of functions. In each iteration, TRAFS finds the best step vector in an $\ell_2$-bounded trust region by considering the worst bound given by the functional subdifferential. TRAFS finds an approximate solution with an absolute error up to $\epsilon$ in $\mathcal{O}\left( \epsilon^{-1}\right)$ or $\mathcal{O}\left(\epsilon^{-0.5} \right)$ iterations depending on whether the objective function is strongly convex, compared to the previously best-known bounds of $\mathcal{O}\left(\epsilon^{-2}\right)$ and $\mathcal{O}\left(\epsilon^{-1}\right)$ in these settings. TRAFS makes faster progress if the functional subdifferential satisfies a locally quadratic property; as a corollary, TRAFS achieves linear convergence (i.e., $\mathcal{O}\left(\log \epsilon^{-1}\right)$) for strongly convex smooth functions. In the numerical experiments, TRAFS is on average 39.1x faster and solves twice as many problems compared to the second-best method.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2311.06205
Document Type :
Working Paper