Back to Search Start Over

Self-similarity Prior Distillation for Unsupervised Remote Physiological Measurement

Authors :
Zhang, Xinyu
Sun, Weiyu
Lu, Hao
Chen, Ying
Ge, Yun
Huang, Xiaolin
Yuan, Jie
Chen, Yingcong
Publication Year :
2023

Abstract

Remote photoplethysmography (rPPG) is a noninvasive technique that aims to capture subtle variations in facial pixels caused by changes in blood volume resulting from cardiac activities. Most existing unsupervised methods for rPPG tasks focus on the contrastive learning between samples while neglecting the inherent self-similar prior in physiological signals. In this paper, we propose a Self-Similarity Prior Distillation (SSPD) framework for unsupervised rPPG estimation, which capitalizes on the intrinsic self-similarity of cardiac activities. Specifically, we first introduce a physical-prior embedded augmentation technique to mitigate the effect of various types of noise. Then, we tailor a self-similarity-aware network to extract more reliable self-similar physiological features. Finally, we develop a hierarchical self-distillation paradigm to assist the network in disentangling self-similar physiological patterns from facial videos. Comprehensive experiments demonstrate that the unsupervised SSPD framework achieves comparable or even superior performance compared to the state-of-the-art supervised methods. Meanwhile, SSPD maintains the lowest inference time and computation cost among end-to-end models.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2311.05100
Document Type :
Working Paper
Full Text :
https://doi.org/10.1109/TMM.2024.3405720