Back to Search
Start Over
Pseudo supports and the depth of modules
- Publication Year :
- 2023
-
Abstract
- Let $(R,\mathfrak{m})$ be a Noetherian local ring, $I$ an ideal of $R$, and $M$ a finitely generated $R$-module of dimension $d$. In this paper, we describe primes ideal $\mathfrak{p}$ satisfying ${\rm depth}(M)= {\rm depth}M_{\mathfrak{p}} +\dim R/\mathfrak{p}$ in term of pseudo supports Psupp$_R^i(M)$ of $M$, for $i=0, \ldots,d$. Furthermore, if $R$ is the homomorphic image of a Cohen-Macaulay local ring, formulas for depth of $M$ and depth of $I$ on $M$ are determined via the finite subset of attached primes of local cohomology modules $H_{\mathfrak{m}}^i(M)$, for $i=0, \ldots,d$.<br />Comment: 8 pages
- Subjects :
- Mathematics - Commutative Algebra
13D45, 13E15, 13E10
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2311.04702
- Document Type :
- Working Paper