Back to Search Start Over

Near-Linear Scaling Data Parallel Training with Overlapping-Aware Gradient Compression

Authors :
Meng, Lin
Sun, Yuzhong
Li, Weimin
Publication Year :
2023

Abstract

Existing Data Parallel (DP) trainings for deep neural networks (DNNs) often experience limited scalability in speedup due to substantial communication overheads. While Overlapping technique can mitigate such problem by paralleling communication and computation in DP, its effectiveness is constrained by the high communication-to-computation ratios (CCR) of DP training tasks. Gradient compression (GC) is a promising technique to obtain lower CCR by reducing communication volume directly. However, it is challenging to obtain real performance improvement by applying GC into Overlapping because of (1) severe performance penalties in traditional GCs caused by high compression overhead and (2) decline of Overlapping benefit owing to the possible data dependency in GC schemes. In this paper, we propose COVAP, a novel GC scheme designing a new coarse-grained filter, makes the compression overhead close to zero. COVAP ensures an almost complete overlap of communication and computation by employing adaptive compression ratios and tensor sharding tailored to specific training tasks. COVAP also adopts an improved error feedback mechanism to maintain training accuracy. Experiments are conducted on Alibaba Cloud ECS instances with different DNNs of real-world applications. The results illustrate that COVAP outperforms existent GC schemes in time-to-solution by 1.92x-15.39x and exhibits near-linear scaling. Furthermore, COVAP achieves best scalability under experiments on four different cluster sizes.<br />Comment: 10 pages, 11 figures

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2311.04499
Document Type :
Working Paper