Back to Search Start Over

DeepInception: Hypnotize Large Language Model to Be Jailbreaker

Authors :
Li, Xuan
Zhou, Zhanke
Zhu, Jianing
Yao, Jiangchao
Liu, Tongliang
Han, Bo
Publication Year :
2023

Abstract

Despite remarkable success in various applications, large language models (LLMs) are vulnerable to adversarial jailbreaks that make the safety guardrails void. However, previous studies for jailbreaks usually resort to brute-force optimization or extrapolations of a high computation cost, which might not be practical or effective. In this paper, inspired by the Milgram experiment w.r.t. the authority power for inciting harmfulness, we disclose a lightweight method, termed as DeepInception, which can hypnotize an LLM to be a jailbreaker. Specifically, DeepInception leverages the personification ability of LLM to construct a virtual, nested scene to jailbreak, which realizes an adaptive way to escape the usage control in a normal scenario. Empirically, DeepInception can achieve competitive jailbreak success rates with previous counterparts and realize a continuous jailbreak in subsequent interactions, which reveals the critical weakness of self-losing on both open-source and closed-source LLMs like Falcon, Vicuna-v1.5, Llama-2, GPT-3.5, and GPT-4. The code is publicly available at: https://github.com/tmlr-group/DeepInception.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2311.03191
Document Type :
Working Paper