Back to Search
Start Over
Electromagnetic moments of the antimony isotopes $^{112-133}$Sb
- Publication Year :
- 2023
-
Abstract
- Nuclear moments of the antimony isotopes $^{113-133}$Sb are measured by collinear laser spectroscopy and used to benchmark phenomenological shell-model and \textit{ab initio} calculations in the valence-space in-medium similarity renormalization group (VS-IMSRG). The shell-model calculations reproduce the electromagnetic moments over all Sb isotopes when suitable effective $g$-factors and charges are employed. Good agreement is achieved by VS-IMSRG for magnetic moments on the neutron-deficient side for both odd-even and odd-odd Sb isotopes while its results deviate from experiment on the neutron-rich side. When the same effective $g$-factors are used, VS-IMSRG agrees with experiment nearly as well as the shell model. Hence, the wave functions are very similar in both approaches and missing contributions to the M1 operator are identified as the cause of the discrepancy of VS-IMSRG with experiment. Electric quadrupole moments remain more challenging for VS-IMSRG.
- Subjects :
- Nuclear Experiment
Nuclear Theory
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2311.01110
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1016/j.physletb.2023.138278