Back to Search Start Over

Do large language models solve verbal analogies like children do?

Authors :
Stevenson, Claire E.
ter Veen, Mathilde
Choenni, Rochelle
van der Maas, Han L. J.
Shutova, Ekaterina
Publication Year :
2023

Abstract

Analogy-making lies at the heart of human cognition. Adults solve analogies such as \textit{Horse belongs to stable like chicken belongs to ...?} by mapping relations (\textit{kept in}) and answering \textit{chicken coop}. In contrast, children often use association, e.g., answering \textit{egg}. This paper investigates whether large language models (LLMs) solve verbal analogies in A:B::C:? form using associations, similar to what children do. We use verbal analogies extracted from an online adaptive learning environment, where 14,002 7-12 year-olds from the Netherlands solved 622 analogies in Dutch. The six tested Dutch monolingual and multilingual LLMs performed around the same level as children, with MGPT performing worst, around the 7-year-old level, and XLM-V and GPT-3 the best, slightly above the 11-year-old level. However, when we control for associative processes this picture changes and each model's performance level drops 1-2 years. Further experiments demonstrate that associative processes often underlie correctly solved analogies. We conclude that the LLMs we tested indeed tend to solve verbal analogies by association with C like children do.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.2310.20384
Document Type :
Working Paper