Cite
SiDA-MoE: Sparsity-Inspired Data-Aware Serving for Efficient and Scalable Large Mixture-of-Experts Models
MLA
Du, Zhixu, et al. SiDA-MoE: Sparsity-Inspired Data-Aware Serving for Efficient and Scalable Large Mixture-of-Experts Models. 2023. EBSCOhost, widgets.ebscohost.com/prod/customlink/proxify/proxify.php?count=1&encode=0&proxy=&find_1=&replace_1=&target=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsarx&AN=edsarx.2310.18859&authtype=sso&custid=ns315887.
APA
Du, Z., Li, S., Wu, Y., Jiang, X., Sun, J., Zheng, Q., Wu, Y., Li, A., Li, H. “Helen,” & Chen, Y. (2023). SiDA-MoE: Sparsity-Inspired Data-Aware Serving for Efficient and Scalable Large Mixture-of-Experts Models.
Chicago
Du, Zhixu, Shiyu Li, Yuhao Wu, Xiangyu Jiang, Jingwei Sun, Qilin Zheng, Yongkai Wu, Ang Li, Hai “Helen” Li, and Yiran Chen. 2023. “SiDA-MoE: Sparsity-Inspired Data-Aware Serving for Efficient and Scalable Large Mixture-of-Experts Models.” http://widgets.ebscohost.com/prod/customlink/proxify/proxify.php?count=1&encode=0&proxy=&find_1=&replace_1=&target=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsarx&AN=edsarx.2310.18859&authtype=sso&custid=ns315887.